Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity.
نویسندگان
چکیده
Several neurodegenerative disorders, including Huntington's disease, are caused by expansion of the polyglutamine (polyQ) tract over 40 glutamines in the disease-related protein. Fragments of these proteins containing the expanded polyQ tract are thought to initiate aggregation and represent the toxic species. Although it is not clear how these toxic fragments are generated, in vitro data suggest that proteasomes are unable to digest polyQ tracts. To examine whether the resulting polyQ peptides could initiate aggregation in living cells, we mimicked proteasomal release of monomeric polyQ peptides. These peptides lack the commonly used starting methionine residue or any additional tag. Only expanded polyQ peptides seem to be peptidase resistant, and their accumulation initiated the aggregation process. As observed in polyQ disorders, these aggregates subsequently sequestered proteasomes, ubiquitin and polyQ proteins, and recruited Hsp70. The generated expanded polyQ peptides were toxic to neuronal cells. Our approach mimics proteasomal release of pure polyQ peptides in living cells, and represents a valuable tool to screen for proteins and compounds that affect aggregation and toxicity.
منابع مشابه
Curcumin enhances the polyglutamine-expanded truncated N-terminal huntingtin-induced cell death by promoting proteasomal malfunction.
Formation of neuronal intranuclear inclusions of the disease proteins that are ubiquitinated and often associated with various proteasome components is the major hallmark of the polyglutamine diseases. Curcumin is a polyphenolic compound having anti-inflammatory, anti-tumor, and anti-oxidative properties. Recently, curcumin has been reported to suppress the amyloid-beta accumulation, oxidative ...
متن کاملE6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality c...
متن کاملMisfolding of Proteins with a Polyglutamine Expansion Is Facilitated by Proteasomal Chaperones*S⃞
Deposition of misfolded proteins with a polyglutamine expansion is a hallmark of Huntington disease and other neurodegenerative disorders. Impairment of the proteolytic function of the proteasome has been reported to be both a cause and a consequence of polyglutamine accumulation. Here we found that the proteasomal chaperones that unfold proteins to be degraded by the proteasome but also have n...
متن کاملNovel Polyglutamine Model Uncouples Proteotoxicity from Aging
Polyglutamine expansions in certain proteins are the genetic determinants for nine distinct progressive neurodegenerative disorders and resultant age-related dementia. In these cases, neurodegeneration is due to the aggregation propensity and resultant toxic properties of the polyglutamine-containing proteins. We are interested in elucidating the underlying mechanisms of toxicity of the protein...
متن کاملBiologically active molecules that reduce polyglutamine aggregation and toxicity.
Polyglutamine expansion in certain proteins causes neurodegeneration in inherited disorders such as Huntington disease and X-linked spinobulbar muscular atrophy. Polyglutamine tracts promote protein aggregation in vitro and in vivo with a strict length-dependence that strongly implicates alternative protein folding and/or aggregation as a proximal cause of cellular toxicity and neurodegeneratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 122 Pt 18 شماره
صفحات -
تاریخ انتشار 2009